例子(Examples)
一、异步加法器(Asychronous adder)
该例使用组合逻辑创建了能处理一些简单算术运算的三操作数Component
:
testbench执行100次下述步骤:
在0..255的范围内随机初始化
a
,b
和c
;给DUT的
a
,b
,c
输入激励;等1个仿真时间步(让输入信号传播)
检查输出是否正确。
import spinal.sim._
import spinal.core._
import spinal.core.sim._
import scala.util.Random
object SimAsynchronousExample {
class Dut extends Component {
val io = new Bundle {
val a, b, c = in UInt (8 bits)
val result = out UInt (8 bits)
}
io.result := io.a + io.b - io.c
}
def main(args: Array[String]): Unit = {
SimConfig.withWave.compile(new Dut).doSim{ dut =>
var idx = 0
while(idx < 100){
val a, b, c = Random.nextInt(256)
dut.io.a #= a
dut.io.b #= b
dut.io.c #= c
sleep(1) //休眠1个时间步
assert(dut.io.result.toInt == ((a + b - c) & 0xFF))
idx += 1
}
}
}
}
二、双时钟FIFO(Dual clock FIFO)
该例创建了为跨时钟域设计的StreamFifoCC
, 用了3个仿真线程。
线程用来处理:
管理两个时钟;
把数据推入FIFO;
把数据移出FIFO。
输入随机数推入FIFO。
FIFO推出线程检查DUT的输出和参考模型是否匹配(原始的scala.collection.mutable.Queue实例)。
import spinal.sim._
import spinal.core._
import spinal.core.sim._
import scala.collection.mutable.Queue
object SimStreamFifoCCExample {
def main(args: Array[String]): Unit = {
// Compile the Component for the simulator.
val compiled = SimConfig.withWave.allOptimisation.compile(
rtl = new StreamFifoCC(
dataType = Bits(32 bits),
depth = 32,
pushClock = ClockDomain.external("clkA"),
popClock = ClockDomain.external("clkB",withReset = false)
)
)
// Run the simulation.
compiled.doSimUntilVoid{dut =>
val queueModel = mutable.Queue[Long]()
// Fork a thread to manage the clock domains signals
val clocksThread = fork {
// Clear the clock domains' signals, to be sure the simulation captures their first edges.
dut.pushClock.fallingEdge()
dut.popClock.fallingEdge()
dut.pushClock.deassertReset()
sleep(0)
// Do the resets.
dut.pushClock.assertReset()
sleep(10)
dut.pushClock.deassertReset()
sleep(1)
// Forever, randomly toggle one of the clocks.
// This will create asynchronous clocks without fixed frequencies.
while(true) {
if(Random.nextBoolean()) {
dut.pushClock.clockToggle()
} else {
dut.popClock.clockToggle()
}
sleep(1)
}
}
// Push data randomly, and fill the queueModel with pushed transactions.
val pushThread = fork {
while(true) {
dut.io.push.valid.randomize()
dut.io.push.payload.randomize()
dut.pushClock.waitSampling()
if(dut.io.push.valid.toBoolean && dut.io.push.ready.toBoolean) {
queueModel.enqueue(dut.io.push.payload.toLong)
}
}
}
// Pop data randomly, and check that it match with the queueModel.
val popThread = fork {
for(i <- 0 until 100000) {
dut.io.pop.ready.randomize()
dut.popClock.waitSampling()
if(dut.io.pop.valid.toBoolean && dut.io.pop.ready.toBoolean) {
assert(dut.io.pop.payload.toLong == queueModel.dequeue())
}
}
simSuccess()
}
}
}
}
三、单时钟FIFO(Single clock FIFO)
该例创建了StreamFifo
, 并产生3个仿真线程。不像Dual clock fifo, 本FIFO不需要复杂的时钟管理。
三个仿真线程用来处理:
管理时钟/复位
数据推入FIFO
数据推出FIFO
输入随机数推入FIFO
FIFO推出线程检查DUT的输出和参考模型是否匹配(原始的scala.collection.mutable.Queue实例)。
import spinal.sim._
import spinal.core._
import spinal.core.sim._
import scala.collection.mutable.Queue
object SimStreamFifoExample {
def main(args: Array[String]): Unit = {
// Compile the Component for the simulator.
val compiled = SimConfig.withWave.allOptimisation.compile(
rtl = new StreamFifo(
dataType = Bits(32 bits),
depth = 32
)
)
// Run the simulation.
compiled.doSimUntilVoid{dut =>
val queueModel = mutable.Queue[Long]()
dut.clockDomain.forkStimulus(period = 10)
SimTimeout(1000000*10)
// Push data randomly, and fill the queueModel with pushed transactions.
val pushThread = fork {
dut.io.push.valid #= false
while(true) {
dut.io.push.valid.randomize()
dut.io.push.payload.randomize()
dut.clockDomain.waitSampling()
if(dut.io.push.valid.toBoolean && dut.io.push.ready.toBoolean) {
queueModel.enqueue(dut.io.push.payload.toLong)
}
}
}
// Pop data randomly, and check that it match with the queueModel.
val popThread = fork {
dut.io.pop.ready #= true
for(i <- 0 until 100000) {
dut.io.pop.ready.randomize()
dut.clockDomain.waitSampling()
if(dut.io.pop.valid.toBoolean && dut.io.pop.ready.toBoolean) {
assert(dut.io.pop.payload.toLong == queueModel.dequeue())
}
}
simSuccess()
}
}
}
}
四、同步加法器(Synchronous adder)
本例用时序逻辑搭建了三操作数的简单算术运算Component
。
在0..255的范围内随机初始化
a
,b
和c
;给DUT的
a
,b
,c
输入激励;一直等待直到DUT信号再次被仿真采样;
检查输出是否正确。
该例和Asynchronous adder例子的主要区别是本Component
需要用forkStimulus
产生时钟信号, 因为它内部用的是时序逻辑。
import spinal.sim._
import spinal.core._
import spinal.core.sim._
import scala.util.Random
object SimSynchronousExample {
class Dut extends Component {
val io = new Bundle {
val a, b, c = in UInt (8 bits)
val result = out UInt (8 bits)
}
io.result := RegNext(io.a + io.b - io.c) init(0)
}
def main(args: Array[String]): Unit = {
SimConfig.withWave.compile(new Dut).doSim{ dut =>
dut.clockDomain.forkStimulus(period = 10)
var resultModel = 0
for(idx <- 0 until 100){
dut.io.a #= Random.nextInt(256)
dut.io.b #= Random.nextInt(256)
dut.io.c #= Random.nextInt(256)
dut.clockDomain.waitSampling()
assert(dut.io.result.toInt == resultModel)
resultModel = (dut.io.a.toInt + dut.io.b.toInt - dut.io.c.toInt) & 0xFF
}
}
}
}
五、串口译码器(Uart decoder)
// Fork a simulation process which will analyze the uartPin and print transmitted bytes into the simulation terminal.
fork {
// Wait until the design sets the uartPin to true (wait for the reset effect).
waitUntil(uartPin.toBoolean == true)
while(true) {
waitUntil(uartPin.toBoolean == false)
sleep(baudPeriod/2)
assert(uartPin.toBoolean == false)
sleep(baudPeriod)
var buffer = 0
for(bitId <- 0 to 7) {
if(uartPin.toBoolean)
buffer |= 1 << bitId
sleep(baudPeriod)
}
assert(uartPin.toBoolean == true)
print(buffer.toChar)
}
}
六、串口编码器(Uart encoder)
// Fork a simulation process which will get chars typed into the simulation terminal and transmit them on the simulation uartPin.
fork{
uartPin #= true
while(true) {
// System.in is the java equivalent of the C's stdin.
if(System.in.available() != 0) {
val buffer = System.in.read()
uartPin #= false
sleep(baudPeriod)
for(bitId <- 0 to 7) {
uartPin #= ((buffer >> bitId) & 1) != 0
sleep(baudPeriod)
}
uartPin #= true
sleep(baudPeriod)
} else {
sleep(baudPeriod * 10) // Sleep a little while to avoid polling System.in too often.
}
}
}